
Lecture 6
Subqueries: splitting up queries

Dr Fintan Nagle
f.nagle@imperial.ac.uk

mailto:f.nagle@imperial.ac.uk

Imperial means Intelligent BusinessImperial College Business School 2

Reading

Video lectures:

6.2 - Overview of methods of splitting queries.mp4
6.3 - Subqueries.mp4
6.4 - CTEs and the WITH statement.mp4
6.5 - Views.mp4
Tutorial on subqueries: https://www.techonthenet.com/postgresql/subqueries.php
Postgres documentation on expressions in subqueries:
https://www.postgresql.org/docs/current/static/functions-subquery.html
Postgres documentation on WITH: https://www.postgresql.org/docs/current/static/queries-with.html
Postgres documentation on CREATE VIEW: https://www.postgresql.org/docs/10/static/sql-
createview.html
Wikipedia article on views: https://en.wikipedia.org/wiki/View_%28SQL%29

https://www.postgresql.org/docs/current/static/functions-subquery.html
https://www.postgresql.org/docs/current/static/queries-with.html
https://www.postgresql.org/docs/10/static/sql-createview.html
https://en.wikipedia.org/wiki/View_%28SQL%29

Imperial means Intelligent BusinessImperial College Business School 3

Splitting up queries

• There are three ways to split up queries:

• Subqueries
Smaller queries nested within the main query.

• Common Table Expressions (CTEs)
using the WITH keyword
Smaller queries placed at the top of the main query.

• Views
Saved queries which you can access as if they were tables.

Imperial means Intelligent BusinessImperial College Business School 4

Subqueries

Imperial means Intelligent BusinessImperial College Business School 5

Subqueries

How do we show films whose rental rate is higher than the average?

We could do two queries, first

SELECT AVG (rental_rate)
FROM film;

...and then

SELECT film_id, title, rental_rate
FROM film
WHERE rental_rate > 2.98;

Imperial means Intelligent BusinessImperial College Business School 6

Subqueries

Or we can use a single query with another query nested inside:

SELECT *
FROM film
WHERE rental_rate >

(SELECT AVG(rental_rate) FROM film)

Imperial means Intelligent BusinessImperial College Business School 7

Duplicated subqueries

SELECT *
FROM film
INNER JOIN rental
WHERE film.rental_rate >
(SELECT AVG(rental_rate) FROM film)
AND rental.rental_rate >
(SELECT AVG(rental_rate) FROM film)

Imperial means Intelligent BusinessImperial College Business School 8

Duplicated subqueries

SELECT *
FROM film
INNER JOIN rental
WHERE film.rental_rate >
(SELECT AVG(rental_rate) FROM film)
AND rental.rental_rate >
(SELECT AVG(rental_rate) FROM film)

Imperial means Intelligent BusinessImperial College Business School 9

Subqueries returning a table

SELECT * FROM
(
SELECT * FROM inner_table
) AS t

Imperial means Intelligent BusinessImperial College Business School 10

Subqueries returning a table

SELECT * FROM(
SELECT inventory.* FROM
film INNER JOIN inventory
ON film.film_id = inventory.film_id
) AS t

Imperial means Intelligent BusinessImperial College Business School 11

Uses for subqueries

• If HAVING is difficult:
just wrap in a subquery and treat like a table, selecting with
WHERE

Imperial means Intelligent BusinessImperial College Business School 12

Tables vs. single bits of data

Sometimes, subqueries return a single piece of data (SELECT
MAX(price) FROM products). This can be used with WHERE, etc.

They can also return a full table (SELECT * FROM products).
These cannot be used where a single number/value/datum is
required.

It is important to distinguish between the two cases.

Imperial means Intelligent BusinessImperial College Business School 13

CTEs (WITH)

Imperial means Intelligent BusinessImperial College Business School 14

WITH (Common Table Expressions or CTEs)

WITH allows another expression to be included as a smaller part.
It’s very similar to subqueries.
From the Postgres docs:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region

), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM

regional_sales)
)

SELECT region,
product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales

FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

Imperial means Intelligent BusinessImperial College Business School 15

WITH (Common Table Expressions or CTEs)

WITH allows another expression to be included as a smaller part.
It’s very similar to subqueries.

WITH new_name AS (
query1

)
main_query

Imperial means Intelligent BusinessImperial College Business School 16

WITH (Common Table Expressions or CTEs)

WITH allows another expression to be included as a smaller part.
It’s very similar to subqueries.

WITH new_name AS (
query1

), top_regions AS (
query2

)

query3

Imperial means Intelligent BusinessImperial College Business School 17

WITH (Common Table Expressions or CTEs)

What’s the difference between WITH and subqueries?

WITH lets you give a subquery a name, allowing it to be easily reused
in several parts of the main query.

This also allows the SQL processor to optimise further, as it can re-use
the same subquery once it has been given a name using WITH.

However, modern processors are getting better and can often notice
that a subquery is repeated and do the optimisation anyway, even
without WITH.

Imperial means Intelligent BusinessImperial College Business School 18

Views

Imperial means Intelligent BusinessImperial College Business School 19

Views

(Northwind)

CREATE VIEW french_suppliers AS

SELECT * FROM suppliers
WHERE country='France'

Then anyone can run:

SELECT * FROM french_suppliers;

• Read only

Imperial means Intelligent BusinessImperial College Business School 20

Views

CREATE TEMPORARY VIEW
french_suppliers AS

SELECT * FROM suppliers
WHERE country='France'

• Read only
• Temporary views expire at

the end of your database
session

• CREATE OR REPLACE
will replace the view if it is
already in place

CREATE OR REPLACE VIEW
french_suppliers AS

SELECT * FROM suppliers
WHERE country='France'

Imperial means Intelligent BusinessImperial College Business School 21

DVD rental

Create a view showing all
films from 2006.

Imperial means Intelligent BusinessImperial College Business School 22

DVD rental

Create a view showing all
films from 2006.

CREATE VIEW films_2006 AS
SELECT * FROM film
WHERE release_year = 2006

Imperial means Intelligent BusinessImperial College Business School 23

Subquery example

Imperial means Intelligent BusinessImperial College Business School 24

Northwind

Find the total value of all products ordered from each supplier.

Imperial means Intelligent BusinessImperial College Business School 25

Northwind

Find the total value of all products ordered from each supplier.

First we get the total value of products in each order:

SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_price
FROM Order_details INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID

This gets the total value of each product ID.

Note: what’s the difference between SUM and *?

Now, we need the SupplierID in order to add up by supplier...

Can we just add it to the list of columns returned?

Imperial means Intelligent BusinessImperial College Business School 26

Northwind

Now we need the supplier ID.

Imperial means Intelligent BusinessImperial College Business School 27

Northwind

Now we need the supplier ID:

SELECT order_details.ProductID,
products.supplierID, SUM(Order_Details.UnitPrice*order_details.Quantity)
FROM Order_details INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID

Will this work?

Imperial means Intelligent BusinessImperial College Business School 28

Northwind

Now we need the supplier ID:

SELECT order_details.ProductID,
products.supplierID, SUM(Order_Details.UnitPrice*order_details.Quantity)
FROM Order_details INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID

Will this work?

Imperial means Intelligent BusinessImperial College Business School 29

Northwind

So we could either

- Group by SupplierID instead

- Join this with the Products table to get the SupplierID

(you can join a table to any table including itself)

Imperial means Intelligent BusinessImperial College Business School 30

Northwind

Join with the Products table to get the SupplierID:

SELECT t.ProductID, SupplierID, total_sales
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales
FROM
Order_details INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t

INNER JOIN products ON t.ProductID = products.ProductID

Imperial means Intelligent BusinessImperial College Business School 31

Northwind
Join with the Products table to get the SupplierID:

SELECT SupplierID,
SUM(total_sales) AS total_supplier_sales
FROM

(SELECT t.ProductID, SupplierID, total_sales
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales
FROM Order_details
INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t

INNER JOIN products ON t.ProductID = products.ProductID) AS t2

GROUP BY SupplierID

Imperial means Intelligent BusinessImperial College Business School 32

Northwind
Join with the Products table to get the SupplierID:
With WITH:
SELECT SupplierID,
SUM(total_sales) AS total_supplier_sales
FROM

(SELECT t.ProductID, SupplierID, total_sales
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales
FROM Order_details
INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t

INNER JOIN products ON t.ProductID = products.ProductID) AS t2

GROUP BY SupplierID

Imperial means Intelligent BusinessImperial College Business School 33

Northwind
Join with the Products table to get the SupplierID:

SELECT SupplierID,
to_char(ROUND(SUM(total_sales / 1000)::numeric,1), '99.9') || 'k' AS
total_supplier_sales
FROM

(SELECT t.ProductID, SupplierID, total_sales
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales
FROM Order_details
INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t

INNER JOIN products ON t.ProductID = products.ProductID) AS t2

GROUP BY SupplierID

Imperial means Intelligent BusinessImperial College Business School 34

Northwind
Join with the Products table to get the SupplierID:

WITH supplier_sales AS
(SELECT SupplierID, to_char(ROUND(SUM(total_sales / 1000)::numeric,1),
'99.9') || 'k' AS total_supplier_sales
FROM

(SELECT t.ProductID, SupplierID, total_sales
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales
FROM
Order_details INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t

INNER JOIN products ON t.ProductID = products.ProductID) AS t2
GROUP BY SupplierID)

SELECT * FROM supplier_sales

Imperial means Intelligent BusinessImperial College Business School 35

Northwind
Join with the Products table to get the SupplierID:

SELECT SupplierID, to_char(ROUND(SUM(total_sales / 1000)::numeric,1), '99.9')
|| 'k' AS total_supplier_sales

FROM
(SELECT t.ProductID, SupplierID, total_sales
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales
FROM
Order_details INNER JOIN Products
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t

INNER JOIN products ON t.ProductID = products.ProductID) AS t2
GROUP BY SupplierID

Imperial means Intelligent BusinessImperial College Business School 36

UNION

Imperial means Intelligent BusinessImperial College Business School 37

UNION

Generates the union (list with duplicates removed) of two tables.

(SELECT LastName FROM Employees)

UNION

(SELECT FirstName FROM Employees)

Imperial means Intelligent BusinessImperial College Business School 38

UNION

(SELECT EmployeeID, LastName FROM Employees)

UNION

(SELECT EmployeeID, FirstName FROM Employees)

Imperial means Intelligent BusinessImperial College Business School 39

UNION

You can use UNION ALL to concatenate
tables:

(SELECT EmployeeID, LastName FROM Employees)

UNION ALL

(SELECT EmployeeID, FirstName FROM Employees)

Imperial means Intelligent BusinessImperial College Business School 40

UNION vs. UNION ALL

(SELECT EmployeeID, LastName FROM Employees)

UNION

(SELECT EmployeeID, FirstName FROM Employees)

(SELECT EmployeeID, LastName FROM Employees)

UNION ALL

(SELECT EmployeeID, FirstName FROM Employees)

Imperial means Intelligent BusinessImperial College Business School 41

UNION vs. UNION ALL

SELECT COUNT(*) FROM
(

(SELECT EmployeeID, LastName FROM Employees)

UNION ALL

(SELECT EmployeeID, FirstName FROM Employees)

) AS t

