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Reading

Video lectures:

6.2 - Overview of methods of splitting queries.mp4
6.3 - Subqueries.mp4
6.4 - CTEs and the WITH statement.mp4
6.5 - Views.mp4
Tutorial on subqueries: https://www.techonthenet.com/postgresql/subqueries.php
Postgres documentation on expressions in subqueries: 
https://www.postgresql.org/docs/current/static/functions-subquery.html
Postgres documentation on WITH: https://www.postgresql.org/docs/current/static/queries-with.html
Postgres documentation on CREATE VIEW: https://www.postgresql.org/docs/10/static/sql-
createview.html
Wikipedia article on views: https://en.wikipedia.org/wiki/View_%28SQL%29

https://www.postgresql.org/docs/current/static/functions-subquery.html
https://www.postgresql.org/docs/current/static/queries-with.html
https://www.postgresql.org/docs/10/static/sql-createview.html
https://en.wikipedia.org/wiki/View_%28SQL%29
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Splitting up queries

• There are three ways to split up queries:

• Subqueries
Smaller queries nested within the main query.

• Common Table Expressions (CTEs) 
using the WITH keyword
Smaller queries placed at the top of the main query.

• Views
Saved queries which you can access as if they were tables.
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Subqueries
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Subqueries

How do we show films whose rental rate is higher than the average?

We could do two queries, first

SELECT AVG (rental_rate)
FROM film;

...and then

SELECT film_id, title, rental_rate
FROM film 
WHERE rental_rate > 2.98;
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Subqueries

Or we can use a single query with another query nested inside:

SELECT *
FROM film 
WHERE rental_rate >

(SELECT AVG(rental_rate) FROM film)
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Duplicated subqueries

SELECT *
FROM film 
INNER JOIN rental
WHERE film.rental_rate >
(SELECT AVG(rental_rate) FROM film)
AND rental.rental_rate >
(SELECT AVG(rental_rate) FROM film)
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Duplicated subqueries

SELECT *
FROM film 
INNER JOIN rental
WHERE film.rental_rate >
(SELECT AVG(rental_rate) FROM film)
AND rental.rental_rate >
(SELECT AVG(rental_rate) FROM film)
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Subqueries returning a table

SELECT * FROM
(
SELECT * FROM inner_table
) AS t
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Subqueries returning a table

SELECT * FROM(
SELECT inventory.* FROM
film INNER JOIN inventory
ON film.film_id = inventory.film_id
) AS t 
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Uses for subqueries

• If HAVING is difficult:
just wrap in a subquery and treat like a table, selecting with 
WHERE
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Tables vs. single bits of data

Sometimes, subqueries return a single piece of data (SELECT
MAX(price) FROM products). This can be used with WHERE, etc.

They can also return a full table (SELECT * FROM products). 
These cannot be used where a single number/value/datum is 
required.

It is important to distinguish between the two cases.
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CTEs (WITH)
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WITH (Common Table Expressions or CTEs)

WITH allows another expression to be included as a smaller part.
It’s very similar to subqueries.
From the Postgres docs:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region

), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM

regional_sales)
)

SELECT region,
product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales

FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;
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WITH (Common Table Expressions or CTEs)

WITH allows another expression to be included as a smaller part.
It’s very similar to subqueries.

WITH new_name AS (
query1

)
main_query



Imperial means Intelligent BusinessImperial College Business School 16

WITH (Common Table Expressions or CTEs)

WITH allows another expression to be included as a smaller part.
It’s very similar to subqueries.

WITH new_name AS (
query1

), top_regions AS (
query2

)

query3
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WITH (Common Table Expressions or CTEs)

What’s the difference between WITH and subqueries?

WITH lets you give a subquery a name, allowing it to be easily reused 
in several parts of the main query.

This also allows the SQL processor to optimise further, as it can re-use 
the same subquery once it has been given a name using WITH.

However, modern processors are getting better and can often notice 
that a subquery is repeated and do the optimisation anyway, even 
without WITH.
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Views
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Views

(Northwind)

CREATE VIEW french_suppliers AS

SELECT * FROM suppliers 
WHERE country='France'

Then anyone can run:

SELECT * FROM french_suppliers;

• Read only
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Views

CREATE TEMPORARY VIEW
french_suppliers AS

SELECT * FROM suppliers 
WHERE country='France'

• Read only
• Temporary views expire at 

the end of your database 
session

• CREATE OR REPLACE 
will replace the view if it is 
already in place

CREATE OR REPLACE VIEW
french_suppliers AS

SELECT * FROM suppliers 
WHERE country='France'
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DVD rental

Create a view showing all 
films from 2006.
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DVD rental

Create a view showing all 
films from 2006.

CREATE VIEW films_2006 AS
SELECT * FROM film 
WHERE release_year = 2006
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Subquery example
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Northwind

Find the total value of all products ordered from each supplier.
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Northwind

Find the total value of all products ordered from each supplier.

First we get the total value of products in each order:

SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_price
FROM Order_details INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID

This gets the total value of each product ID.

Note: what’s the difference between SUM and *?

Now, we need the SupplierID in order to add up by supplier...

Can we just add it to the list of columns returned?
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Northwind

Now we need the supplier ID.
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Northwind

Now we need the supplier ID:

SELECT order_details.ProductID,
products.supplierID, SUM(Order_Details.UnitPrice*order_details.Quantity)
FROM Order_details INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID 
GROUP BY order_details.ProductID

Will this work?
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Northwind

Now we need the supplier ID:

SELECT order_details.ProductID,
products.supplierID, SUM(Order_Details.UnitPrice*order_details.Quantity)
FROM Order_details INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID 
GROUP BY order_details.ProductID

Will this work?
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Northwind

So we could either

- Group by SupplierID instead

- Join this with the Products table to get the SupplierID

(you can join a table to any table including itself)
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Northwind

Join with the Products table to get the SupplierID:

SELECT t.ProductID, SupplierID, total_sales 
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales 
FROM
Order_details INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID 
GROUP BY order_details.ProductID) as t 

INNER JOIN products ON t.ProductID = products.ProductID
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Northwind
Join with the Products table to get the SupplierID:

SELECT SupplierID,
SUM(total_sales) AS total_supplier_sales 
FROM

(SELECT t.ProductID, SupplierID, total_sales 
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales 
FROM Order_details 
INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t 

INNER JOIN products ON t.ProductID = products.ProductID) AS t2 

GROUP BY SupplierID 
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Northwind
Join with the Products table to get the SupplierID:
With WITH:
SELECT SupplierID,
SUM(total_sales) AS total_supplier_sales 
FROM

(SELECT t.ProductID, SupplierID, total_sales 
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales 
FROM Order_details 
INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t 

INNER JOIN products ON t.ProductID = products.ProductID) AS t2 

GROUP BY SupplierID 
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Northwind
Join with the Products table to get the SupplierID:

SELECT SupplierID,
to_char(ROUND(SUM(total_sales / 1000)::numeric,1), '99.9') || 'k' AS
total_supplier_sales 
FROM

(SELECT t.ProductID, SupplierID, total_sales 
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales 
FROM Order_details 
INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t 

INNER JOIN products ON t.ProductID = products.ProductID) AS t2 

GROUP BY SupplierID 
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Northwind
Join with the Products table to get the SupplierID:

WITH supplier_sales AS
( SELECT SupplierID, to_char(ROUND(SUM(total_sales / 1000)::numeric,1),
'99.9') || 'k' AS total_supplier_sales
FROM

(SELECT t.ProductID, SupplierID, total_sales
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales
FROM
Order_details INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID
GROUP BY order_details.ProductID) as t 

INNER JOIN products ON t.ProductID = products.ProductID) AS t2 
GROUP BY SupplierID)

SELECT * FROM supplier_sales
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Northwind
Join with the Products table to get the SupplierID:

SELECT SupplierID, to_char(ROUND(SUM(total_sales / 1000)::numeric,1), '99.9')
|| 'k' AS total_supplier_sales 

FROM
(SELECT t.ProductID, SupplierID, total_sales 
FROM

(SELECT order_details.ProductID,
SUM(Order_Details.UnitPrice*order_details.Quantity) AS total_sales 
FROM
Order_details INNER JOIN Products 
ON Order_Details.ProductID = Products.ProductID 
GROUP BY order_details.ProductID) as t 

INNER JOIN products ON t.ProductID = products.ProductID) AS t2 
GROUP BY SupplierID
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UNION
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UNION

Generates the union (list with duplicates removed) of two tables.

(SELECT LastName FROM Employees)

UNION

(SELECT FirstName FROM Employees)
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UNION

(SELECT EmployeeID, LastName FROM Employees)

UNION

(SELECT EmployeeID, FirstName FROM Employees)
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UNION

You can use UNION ALL to concatenate 
tables:

(SELECT EmployeeID, LastName FROM Employees)

UNION ALL

(SELECT EmployeeID, FirstName FROM Employees)
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UNION vs. UNION ALL

(SELECT EmployeeID, LastName FROM Employees)

UNION

(SELECT EmployeeID, FirstName FROM Employees)

(SELECT EmployeeID, LastName FROM Employees)

UNION ALL

(SELECT EmployeeID, FirstName FROM Employees)
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UNION vs. UNION ALL

SELECT COUNT(*) FROM
(

(SELECT EmployeeID, LastName FROM Employees)

UNION ALL

(SELECT EmployeeID, FirstName FROM Employees)

) AS t


